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Michael addition of organometallics, particularly organocop-
pers1 and organozincs,2 to R,â-unsaturated carbonyl compounds
is a well-established method for the formation of carbon-carbon
bonds. Over the past two decades, asymmetric versions of these
reactions, particularly with copper reagents, have been developed
which can be highly selective.3,4 However, one important limita-
tion of organocopper reagents is that they do not efficiently
transfer alkynyl groups to organic substrates (Scheme 1).5 Since
alkynyl groups may be readily manipulated into many other
functionalities,6 we were interested in filling this void by
developing reactions which could stereoselectively add alkynyl
groups in a Michael fashion toR,â-unsaturated carbonyl com-
pounds. We now report the first examples of enantioselective
conjugate additions of alkynyl groups to enones.7

Conjugate alkynyl group transfer using achiral reagents had
been achieved with alkynylboron8 and aluminum9 reagents.
However, it appears that no asymmetric versions of these reactions
have been reported.

We reasoned that an alkynylboronate derivative of a chiral diol
might be an asymmetric conjugate alkynylation reagent.10-12 1,1′-
Bi-2-naphthol has been used as a very effective chiral auxiliary
in many asymmetric transformations13 so we directed our initial
efforts to prepare reagents of general structure2 (Scheme 2). It
has previously been shown14 that alkynylboronates may be pre-

pared by reaction of an alkynyllithium with a borate followed by
treatment of the resulting adduct with HCl or BF3‚OEt2. Since it
is known that transesterification ofB-1-alkynylboronates is not
an effective reaction,14athe most straightforward route to boronates
2 would be to add alkynyllithiums to a mixed borate such as
binaphthyl isopropyl borate (1).14 However, we were unable to
prepare compounds such as1.15,16

Eventually it was found that reaction of binaphthol (3a) with
lithium B-1-octynyltriisopropylborate (4a) (with removal of
i-PrOH) provided borate5a (Scheme 3).17 As expected, this com-
plex was unreactive toward enones. However, it was anticipated
that, in analogy with previous work,14aaddition of acid (e.g. HCl
or BF3‚OEt2) would generate the reactive trivalent boronate2a.18

Indeed, treatment of5a and chalcone in CH2Cl2 at room temper-
ature with HCl or BF3‚OEt2 provided the expected 1,4-addition
product cleanly in high yield. The observed enantioselectivity
(31% ee) was disappointingly low but showed that enantioselec-
tive conjugate alkynylation using this type of chemistry is possible.

It was gratifying to find that when 3,3′-diphenylbinaphthol3b19

was used in place of the parent binaphthol3a, addition to chalcone
was considerably more selective (Table 1). In general, reactions
gave high yields of 1,4-addition products with no detectable side-
products. In all cases, reactions using the 3,3′-diphenylbinaphthol
reagent were much more selective than those with the unsubsti-
tuted binaphthol. In fact, with aryl groups in theâ-position,
enantioselectivities were uniformly high, ranging from 85 to
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>98% ee. With alkyl groups in theâ-position, there was a
pronounced steric effect wherein selectivities increased with the
size of the substituent. There was also an increase in selectivity
when the size of the aryl group in theâ-position was increased.
Overall, it seems that alkynylboronates2 efficiently transfer
alkynyl groups to enones; an aryl group directly attached to the
carbonyl carbon of the enone is important for high reactivity while
both the size and electronic character of theâ-substituent are
important for selectivity. Best selectivities were observed with
â-substituents which have electron-richπ-systems.

Since it is known that alkynyl 9-BBN reagents add only to
enones capable of achieving ans-cis conformation,8a it was not

surprising to find that2b did not react with 2-cyclohexenone.
Similarly, no reaction was observed with aâ,â-disubstituted enone
(dypnone). Reactions ofZ enones gave essentially the same
selectivities as theirE counterparts.20

The adducts7i and8i were prepared particularly to shed some
light on the absolute configuration of the addition products. Using
R binaphthol 3b produced alkynyl ketones7i and 8i with R
stereochemistry (X-ray). This stereochemistry is the stereochem-
istry predicted based on a cyclic six-membered transition state
similar to that proposed by Brown for additions of alkynyl 9-BBN
reagents to enones8a and also by Noyori for the asymmetric
reduction of alkyl aryl ketones with BINAL-H (Figure 1).21 This
model is also consistent with the enhanced selectivity observed
with 3,3′-substituents. Thus, of the two possible types (based on
the diastereotopicity of the binaphthoxy oxygens) of chair-
transition states10and11, structure10 is disfavored due to steric
interactions. With structures such as11, there would be two
possible diastereomeric transition states with11R favored over
11S. This model fits well with the observed dependence of
enantioselectivity on both the size and electronic nature of the
â-substituent on the enone.22

In conclusion, we have found that alkynylboronates2 can
transfer alkynyl groups regioselectively and enantioselectively to
enones.23 These represent the first enantioselective conjugate al-
kynylations. We are currently investigating the effects of other diol
ligands on this reaction and will report these results in due course.
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Cl (2 mL) and water (2 mL) were added to quench the reaction. Standard
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Table 1. Enantioselective Conjugate Addition of Alkynyl Groups
to Enonesa

enone reagent product yieldb % eec enone reagent product yieldb % eec

6a 2a 7a 90 31 6f 2b 7f 82 74
6b 2a 7b 38 31 6g 2b 7g 91 >98d

6c 2a 7c 90 3 6h 2b 7h 91 95
6a 2b 7a 88 85 6i 2b 7i 93 75
6b 2b 7b 50 85 6a 2c 8a 90 90
6d 2b 7d 80 16 6h 2c 8h 99 98
6c 2b 7c 85 41 6i 2c 8i 87 90
6e 2b 7e 87 82 6h 2d 9h 81 >98d

a Reactions run at room temperature as described in ref 23.b Isolated
yields of chromatographed material.c Determined by HPLC using a
Chiralcel OD column.d Minor isomer not detected by HPLC analysis.

Figure 1. Cyclic 6-membered chair-transition states.
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